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A model of static boson—fermion stars with spherical symmetry based on the
scalar—tensor theory of gravity with a massive dilaton field is investigated numeri-
cally. Since the radius of the staragriori an unknown quantity, the corresponding
boundary value problem is treated as a nonlinear spectral problem with a free in-
ternal boundary. The continuous analogue of Newton method is used to solve this
problem. Information about basic geometric functions and the functions describing
the matter fields which build the star is obtained. From a physical point of view
the main result is that the structure and properties of the star in the presence of a
massive dilaton field depend essentially on both its fermionic and bosonic comp-
onents. © 2001 Academic Press
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1. INTRODUCTION

The most natural and promising generalizations of general relativity are the scalar—tel
theories of gravity [1-4]. In these theories gravity is mediated not only by a tensor field (1
metric of space—time) but also by a scalar field (the dilaton). The scalar—tensor theorie
gravity contain arbitrary functions of the scalar field that determine the gravitational “cc
stant” as a dynamic variable and the strength of the coupling between the scalar field
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matter. It should be stressed that specific scalar—tensor theories of gravity arise natural
a low-energy limit of the string theory [5-13] which is the most promising modern mod
of the unification of all fundamental physical interactions.

If the string theory and its low-energy limit are relevant to the real world, then the dilatc
must be massive [14]. Unfortunately, our current understanding of how the dilaton acqu
mass is primitive, which is a result of our lack of understanding of supersymmetry breaki
At present, we do not have a model of how the dilaton mass is generated in the string the
Besides the mass term for the dilaton field we may consider the general case of arbit
dilaton potential, describing its nonlinear self-interaction.

From a physical point of view, it is important to know how the dilaton mass and, i
general, the dilaton potential influence the structure and stability of compact objects s
as neutron stars, boson stars, and mixed fermion—boson stars.

Itis known that the predictions of scalar—tensor theories of gravity with a massless dila
may differ drastically from those of general relativity. For example, the phenomenon
“spontaneous scalarization” was discovered recently [15, 16] as a non-perturbative str
field effect in a massive neutron star. The existence of this effect poses some impor
physical questions [17]. That is why it is natural to ask whether spontaneous scalariza
will occur when the dilaton is massive. In recent years, the boson stars in scalar—ter
theories of gravity with a massless dilaton have been widely studied both analytice
and numerically (see, for example, [18-25]). The study of boson stars in the case ¢
massive dilaton is physically interesting and may be important for the understanding
their formation in the early universe.

The investigation of the compact objects in generalized scalar—tensor theories of gra
helps us understand them better. On the other hand, the investigation of matter under ext
conditions like those in neutron stars may demonstrate new phenomena and new fea
of specific scalar—tensor theories of gravity, originating from the low-energy limit of th
string theory. Thus, for the first time we may be able to reach theoretical indications c
physical manifestation of the string theory in the real world [26].

In the present paper we develop a direct numerical method for solving the equati
of the general scalar-tensor theories of gravity including a dilaton potential term for t
general case of mixed boson—fermion stars.

The physical motivation for considering mixed boson—fermion stars is connected w
the fact that many present-day stars are of primordial origin, formed from an original ¢
of fermions and bosons in the early universe. That is why it should be expected that
are a mixture of both fermions and bosons in different proportions. The study of su
mixed objects is a new interesting problem, whose investigation was started in Ref. [
There exist different candidates for boson fields in stars, such as the Higgs field of
standard model or the axion field, which is a pseudoscalar partner of the dilaton in
superstring theory. They are an unavoidable part of modern physics; nevertheless, up to
we have no experimental evidence for their existence. Taking into account that accorc
to the modern understanding of the initial state of the universe these fields must have |
present at significant intensities during the Big Bang, one has to expect some part of tt
fields to be present in stars of primordial origin. The study of new observable effects
boson fields in such mixed stars may open new ways of discovering the existence of
above hypothetical fields, which at present are the most intriguing new objects in mod
physics.
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In the Einstein frame the field equations in the presence of fermion and boson mattet
i BTl 4 Fri - | i1 j
Gl = (®°T + 1) + 201903 0 — 0' 9 05] + éU(ga)a- ,

. 1, K
Vivig+ 2U'() = ——a(q))(BT +F1),

W 1)
— _ 2
ViV + 20(0)d' g ¥ = —2A ((p)a\y+
AW
ViVIwt 4 2a(p)d' g Wt = —2A2(<p)—
whereV; is the Levi—Civita connection with respect to the megic(i =0,...,3; ] =
0,...,3). The constant, is given byx, = 87 G,, whereG, is the bare Newtonian gravita-

tional constant. The physical gravitational “constantGisA?(¢), whereA(y) is a function
of the dilaton fieldp depending on the concrete scalar—tensor theory of gravity. For examg
in the framework of the Brans—Dicke model we havg) = exp(ﬁ), wherewgp is
a parameter.

The dilaton potential () can be written in the forn (9) = m3V (¢), wheremp is
the dilaton mass and (¢) is a dimensionless model function @f

The complex scalar field describes bosonic matter, whilet is its complex conjugated
function. The quantityV/ (W W) is the potential of the boson field, which can be chosen i
the form

- m2 1.
W Htw) = —7Bw+\11 — ZA(\IJW)Z,

whereA is a parameter.

The scalar functior (¢) = %[In A(p)] determines the strength of the coupling betweer
the dilaton fieldp and matter.

The quantities®T and FT are correspondingly the traces of the energy—momentu
tensors of the fermionic mattéﬂ'J and the bosonic mattéfl’J We note that in the present
article we consider the fermionic matter only in macroscopic approximation, i.e., af
averaging quantum fluctuations of the corresponding fermion fields. Thus, we actu
consider standard classical relativistic matter.

The explicit forms of the tensors mentioned are correspondingly
BTl = L A2y @ wt ol v+ o wal wt

5 P)GYTIW 4+ g walwh)

— %Az(go)[al W — 2A2(0)W(WHw)]s! (2
T = (e + puiud — ps). 3)

Here, the energy density and the pressure of the fermionic fluid in the Einstein frame
e = A*p) andp = A*(p) p, wheres"and p are the physical energy density and pressure
Instead of giving the equation of state of the fermionic matter in the form f(8), it is
more convenient to write it in the parametric form
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wheregy is a properly chosen dimensional constanis the dimensionless Fermi momen-
tum, andf (x) andg(u) are given functions (see below).

The physical four-velocity of the fermionic fluid is denotedipy

The field equations, together with the Bianchi identities, lead to the local conservat
law of the energy—momentum of matter:

ViFT) = a(@) Taip. (5)

Hereafter, we will assume a static and spherically symmetric mixed boson—fermion ¢
in asymptotically flat space—time. This means that the mgtribas the form

ds® = e’ dt? — & dr2 — r2(d6? + sirf 6 d¢?), (6)

wherer, 0, ¢ are the usual spherical coordinates.
The field configuration is static when the boson fi#lgatisfies the condition

W =5(r)e.

Here,w is a real number and(f) is a real function.

Taking into account the above-stated assumption, the system of field equations is redt
to a system of ordinary differential equations (ODESs). Before writing the system expli
itly, we introduce a rescaled (dimensionless) radial coordinate by mgr, r € [0, c0),
wheremg is the mass of the bosons (a prime will denote differentiation with respect to tl
dimensionless radial coordinate

We also define the following dimensionless quantities:

Q=—, 0=Vk,6, A=—%, y=—.
mg * K*mé v mg

The components of the energy—momentum tensors for the fermionic and bosonic ma
written in terms of the dimensionless quantities, are correspondingly

"5 = bA @G, T =FTF = —bA ) f (), @
T = %QZAZ«p)e‘”aZ(r )+ %Azw))e—ko/z - AH)W(o?), (8)
T = —%92A2<<p>e*”o-2<r> - %Azw)e%/z — Alp)W(o?), (9)
o1 = _%QzAz(w)e_”Uz(r) + %Az«p)e‘ko/z — AY@W(o?). (10)

The parameteb = .8,/ m3 describes the relation between the Compton length of th
dilaton and the usual radius of the neutron star in general relativity.

Itis necessary to note that two physically interesting borderline cases of pure bosonic
pure fermionic stars are formally contained in the above general system (1). For exam
the model of pure bosonic stars can be obtained from (1) by letting the tefisde zero,
while the pure fermionic stars correspond to the figlek 0. The case of pure bosonic stars
in the scalar—tensor theories of gravity with a massive dilaton has already been discu:
in [28]. In the present paper we consider mixed boson—fermion stars.
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2. FORMULATION OF THE PROBLEM

Under the physical assumptions we have made, the field equations (1) can be reduc
a system of ODEs. From a mathematical point of view it is more convenient for all ODI
to be of second order. That is why we first solve the Einstein equéidor €*,

_ 1+ 2(,0'2 1A2(<,0)r2(7’2
1-r2[FT + 32V (p) — 3Q2A%(p)e 02 — A(p)W(02)]’

as a function of the quantitiegr ), v'(r),o (r), o’ (r), o(r), ¢’(r), and the spectral parameter
2, and then substitute the above expression into the other Einstein equations. In this
in terms of the dimensionless quantities, the system of the field equations (1) is reduce
the following system of ODEs:

/

V4 = {—”? + (FTO — FTE — 2FT2 4+ BTO — BTL — 28T)
— V() + = (Tl + ysz»))] e, (11)

¢,/+g’:[ ¢ a(w)

=t (TP
+ %yzv/(@ + %(Tl + ysz»] e, (12)
o’ + GT/ = —2a(p)¢'o’ + {—UT/ — 2N (@)W (0o
— Q%0 + - (Tl +y2V (go))] e (13)
In the above equations, the potential of the bosonic méitdias the form

1 1
2y~ 2, L+, 4
W(o“) = 2(0 +2Ao>,

and we suppose thily’ (02) = d( 5. Similarly, we seV’(¢) =
The quantityT; depends on the components of the energy—momentum tensors of
fermionic and bosonic matter (7)—(9):

Ty =FTO + FTE 4+ BT 4+ BTL

The quantitiessT and T represent the traces of these tensors and are defined by -
formulae

BT = —Q2A%(p)eVo? + A2(p)e0'? — 4AY(9)W(o?),
FT = bAY@)[g(n) — 3f ()]

Correspondingly, the conservation law (5) can be expressed as

f_ 9w+ f ()

|G v (14)
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The fermionic matter function$ (i) andg(w) in the above relations have the form

1

f(u) = é[(ZM —3Vu+u2+3In(/iw+ 1+ wl, (15)
1

g(p) = é[(ﬁu +3V i+ pu? = 3In(/iw+ /14 w). (16)

Let us now complete the problem by adding proper boundary conditions (BCs) to f
system of differential equations (11)—(14).

The asymptotic flathess means that the functign — 0 whenr — co. On the other
hand, the nonsingularity condition at the center of the star requires the derivatye-

0. The same conditionin relation to the dilaton figld) implies that the derivativg’ (0) = 0.

At the same time, the functiop(r) at the asymptotic infinityr(— oo) must beg,, =0
as it is required by the asymptotic flatness. The nonsingularity of the bosonic defsity
at the center of the star requires the derivativ@®) = 0. We need finite mass for the star,
which implieso (r) — 0 whenr — oc. In addition, the central valug. = ¢ (0) must be
given. Concerning the fermionic fluid, we have to give the central deasity £(0) or,
equivalently, the central valye, = £(0).

It should be noted that for the physically relevant equation of state of the fermionic mat
there must be a point= Rs < oo where the pressure of the fermionic matter vanishes
i.e., Rs is the radius of the fermionic part of the star.

As a conclusion, from the above-mentioned physical assumptions, we can formulate
following linear boundary conditions (BCs) for the quantities under consideration:

V' (0) =0, v(co)=0; a7
¢'(0) =0, ¢(c0)=0; (18)
o'(0) =0, o(c0)=0; (19)
1n(0) = pe. (20)

Here, we denoté)(co) def iMoo ().

Apart from the unknown functions(r), o (r), ¢(r), andu(r), Egs. (11)—(14) also in-
clude two unknown real parameteR, > 0 and$2. However, the seven BCs (17)—(20) are
insufficient for their computation. In order to determine these parameters, we have to
additional conditions. In other words, the problem may be considered a nonlinear eig
value problem, wher®; and<2 are considered “eigenvalues.” For this purpose, further o
we use two physically clear additional conditions.

The first one, given by the relation

a(0) = o, (22)
determines the density > 0 of the bosonic matter in the star’s center. The second one,
w(Rs) =0, 0< Rs < o0, (22)

describes the condition that the density of the fermionic matter must vanish at the radiu
the star.
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Finally, we note that all the functions(r), o (r), and¢(r) are defined on the whole
real half-liner € [0, co). It is easy to see that these functions are smooth in this interv
including the point = Rs, whereas the fermionic density(r) is defined and smooth only
inside the star; i.er, € [0, Rg].

3. METHOD OF SOLUTION

For solving the above formulated nonlinear eigenvalue problem the continuous analo
of Newton method CANM; (see [29—-33] and comprehensive surveys [34, 35]) is appli
For convenience, a brief description of the CANM can be found in the Appendix.

The presence of the priori unknown quantityRs, however, is an obstacle to the direct
use of CANM; the problem is the unknown internal boundBgyln order to overcome this
obstacle, we introduce a new scaled coordinate,r / Rs. As a result, the physical domain
r € [0, co) maps to the domair € [0, c0), and the star’s radius= R; maps into the fixed
pointx = 1. Then the BC (22) for(x) becomes

(1) = 0. (23)

Let x, and x, be two arbitrary points in the internal domain [0, 1]. We note that fo
the arbitrary functionsf (1), g(u), anda(p), Eq. (14) has a first integral, which can be
presented as

()
f () + g(u)

M1

Alp2)

=0,
Ap1)

1
du + E(vz— v1) +In

wherevs, vo, @1, @2, 1, 2 Stand for the functions(x), ¢(x), u(x) at the points¢; and
X2, respectively. Thus, for the model of the fermionic matter described by conditions (:
and (16) we simply get the algebraic equation

{(1 + 112) A2(¢2)

L+ m)AZ(mJ tremn=0 9

For convenience, we introduce the vectax) = {v(x), ¢(X), o (X)}. Then the first three
equations (11)—(13) of the problem and the corresponding BCs (17)—(19) can be rewri
as

—xy’ —y +F=0, (25)
y'(0) =0, y(o0) =0, (26)

whereF = F(x,V,Y, u, Rs, Q) is a 3D vector consisting of the right-hand sides (RHSs
of Egs. (11)—(13) multiplied byrR2x. Differentiation with respect to the new independent
variablex is denoted by.)'. In the linear case, the advantages of such representation of t
radial operator are discussed in [36].

Following CANM, we introduce a “time-like” parametdr,c [0, co), and assume the
unknown quantities depend oras well:y = y(x,t), Rs = Rs(t), 2 = Q(t). Let us sup-
pose that the functiop = w(x) is known (see below). Then the CANM equations [35]
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corresponding to (25) and (26) become

oF oF 2 oF oF
—xz" ——E|Z+—2 —F+ — —w=xy'"+y —-F, (27
+<8y’ > +8y +(Rs +8Rs)p+8§2w y'+y —-F, (27)

Z(0) = —y'(0), z(c0) = —Yy(00), (28)
whereE is an identity 3x 3 matrix and
y:Zv RS:/)9 Q:a). (29)
The respective Freetderivatives at the poiriy, Rs, Q) aredF/d(.) and the dot in (29)
and below denotes differentiation with respect to “tinbe”
The solutionz(x) of the above equation is sought as a linear function of the derivative
o andow,
Z=U+ pV+ oW, (30)
whereu(x), v(x), andw(x) are assumed to be new unknown 3D vector functions.of

Substituting for them in Eq. (27), we obtain the following three vector ODEs of secor
order with respect to these quantities:

oF oF
XU —U 4+ —U+—u=xy"+y —F, 31
Tl Ty y'+y (31)
oF oF 2 oF
XV =V 4+ —V+ —v=— —F+ — |, 32
TayY Ty (Rs +aRs> 52
JoF JoF oF
—XW =W+ —W+ —W=——. 33
+ ay’ + ay 1Y (33)

The above three equations are coupled with six BCs,

u'(0) = —y'(0), u(oo) = —y(c0), (34)
V'(0) =0, v(oo) =0, (35)
w'(0) = 0, w(oo) = 0, (36)

which are obtained from BCs (28), substituting for them with decomposition (30) also. L
us emphasize that the above equations (31)—(36) have equivalent structures of the left-
sides, which essentially facilitates their numerical treatment.

In order to calculate the derivativesandw, we apply CANM for the first additional BC
(21). This gives

d(0) = oc — 0 (0).

One more condition is required. Unfortunately, the second additional condition (23) is 1
convenient for this purpose because knowledge about decomposition (30) concerning
functionu(x) is not available. We avoid this difficulty by using the integral (24)Xpe 0

andx, = 1. Taking into account conditions (20) and (23), we obtain an algebraic equati
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with respect to the quantitieg0), v(1), ¢(0), ¢(1). After applying CANM to this equation,
we get

Alp(1)] Alp0)] .

V(D) —-v0)+2 Alo(D] P -2 AlpO)] ®(0)
Alp(1
= In(L+ pe) — [V(1) — v(©)] — 2In A{ZEOH ;)

where the abbreviatio®' denotes the derivative of the functiok with respect to the
argumentp.

Let us now eliminate all the derivatives in relation to “timdjy means of decomposition
(30). As a result, we receive the linear system of algebraic equations

aip +biw =cy,
(37)
ap +bw =0

with respect to the unknown derivativesindw. The coefficients in formulae (37) are given
by

ag = v1(1) — v1(0) + 2AA/[[$((11))]] va(1) — 2 i,[[gf((c())))]] v2(0),

R T

c1 =N+ o) — [v(D) — v(O)] — 2?{5511;]] uz(1) + 2/:[[5((8))]] U2(0)
—2In 2{28} — uy(D) + us(0),

a = v3(0), by =ws3(0), C;=0c—0(0)—uz(0).

Obviously, the explicit form of the coefficients in system (37) depends on the concrt
choice of functionsf () andg(u).

4. GENERAL SEQUENCE OF THE ALGORITHM

We discretize the continuous time-like parameter[0, co) asty,1 = tx + t«, to = 0,
wherek =0, 1, 2, ... denotes the number of iterations, and the time steis generally
assumed to be a variable quantity. Next, we use the Euler difference scheme [34] to apr
imate the time derivatives in Egs. (29). Then we can write

Yk+1(X) = Yk (X) 4 [Uk(X) + okVi(X) + oWk (X)],
Rsk+1 = Rsk + ok, (38)
Qpi1 = Q + T)wk.
Let us suppose that the functiongx), gk(X), ok(X), ux(X) and the parametelRs x, Q2

are given. We solve the linear BVP (31)-(33) and, thus, we compute the funations
Vk(X), Wi(X). Next, to obtain the derivatives, andwy we solve system (37). After that,
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using decomposition (38) for a selectgd we calculate the functions 1(X), @k1(X),
ok+1(X), the radius of the staRs «+1, and the quantity2y,, as well at the new stade+ 1.
In the end, we calculate the functigi. 1(X) at the new stage, according to the recurren
formula, which can be obtained immediately from the first integral (24).

For every iteratiork an optimal time stepop is determined in accordance with the
Kalitkin—Ermakov formula [33, 37],

8(0)

= 39
8(0) +38(1) (39)

Topt
where the residudl(t) is represented as
8(tk) = maxPs, (Rsk + tkok)?, (2 + twk)?]

ands is the Euclidean residual of RHS of Eq. (31). Formula (39) provides approximate
the minimal value of the residual for the current solution, given by (38).

The criterion for termination of the iterations d$topt) < &, wheres ~ 10-8-10-12,
Then, for the sought solutions we séiX) = vk 1(X), (X) = gkr1(X), o (X) = oxy1(X),

Rs = Rs ki1, @ = Qxy1.

The use of the standard programs available, for example, via the Internet [40] to sc
numerically the linear BVPs (31)—(36) is unhandy for many reasons. Because of that,
employ the spline-collocation scheme.

We introduce a nonuniform grid,

A:Xipgi=X+hi, i=0,1...,Ng,Ngy1,...,N=1 Xo=0, XN = Xu,

on the intervalx € [0, X,], condensing to the pointe = 0 andx = 1. Here, X, is the
“actual infinity,” Ng is the number of the node= 1, N is the full number of the subintervals,
andh; is the grid step. We will seek approximate solutions of the above linear BVPs a:
cubic spline on the gridh. Namely, forx € [x, Xi41], i =0, ..., N — 1, we set

UX) = ¥1(0) Ui + ¥2(0) Mi + ¥3(6) Ui 1 + ¥4(0) Mi 1. (40)

In the above formula the relative coordinagte= (x — Xj)/h; and the known functions
¥ (0), | =1,...,4, are the coefficients of the spline. For simplicity in the last formula
we introduced the X 3 matricesU andM, consisting of the coordinates of the vectors
u, v, w from (30) and their first moments at the spline nogles =0, ..., N. According to
the collocation method [38], in every subinterval,[x+1] ,i =0, ..., N — 1, the system
(31)—(33) is satisfied at the corresponding Gaussian péints 1/2 — +/3/6 and6, =
1/2 + +/3/6. This kind of discretization yields an algebraic system with respect to tt
functions and their moments at the spline nodes. The corresponding matrix has an alr
block-diagonal structure (see [38]). Therefore, at ittieblock § =1,..., N — 1) the
collocation equations have the form

Ui

(HaﬁnH (LANIEA H%H) M; =<q1>’
aall &l llckall lldall / | Ui+ ¢

Mit1
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whereg is the vector of RHSs of Egs. (31)—(33) at the collocation nodes, while the sup
script corresponds to the number of these nodes. Here,

: & IR\ 1. 9Fy
) J - ) .
akn = ( l/flj + — le)gkn (ayr/")” hi 1/f]_] + <—8yn>ij I/flja

i &ij aFy . aFy
bl = —( = 8 — () hiyy
kn ( sz-HﬁzJ) kn+<ay,)ij 1>ﬁ21‘+‘<ayn>ij leJa

n

: £ IR\ 1. 9Fy
i _ (S L ,
Cin = ( SV + 1/f3J>8kn+ (3%)” h Vaj + <3yn>ij Vs,

i &i R\ - dF
kn ( w4j+w4j>kn+<ay,)ij w4j+<ayn)” iYaj,

n
for k=123 n=123 j=12
and the quantitieg;; = x; + 6;h; are the absolute coordinates of the collocation points
The derivatives of the spline coefficients with respect to the relative coordinadeare
dotted.

The dimensions of the first and last blocks in the global matrix are greater, since we
two matrix rows corresponding, respectively, to the left and right BCs.

Formula (40) is also used for the approximation of the RHSs of system (31)—(33) in"
collocation points.

The spline-difference schemes of this kind have a high order of approxin(aﬁﬁ‘h ,
whereh = maxh;},i =0,..., N

It is clear that to solve all three algebraic systems, corresponding to the linear B\
(31)—(36) at every iteration, only oridJ -decomposition is necessary.

Depending on the initial values of the governing physical parameters, the numbel
iterations varies approximately in the range 4-16. If we vary a solution as a function
one of the parameteys., o¢, ¥, A, or b, then we use the previous solution as an initial
approximation for computing the next one.

5. RESULTS AND DISCUSSION

In order to be specific in the present article, we focus our attention on a concrete sce
tensor gravity model, characterized by the functions

A@):exp(i and V(p) = (1—[A@@]™H?

%)

For more details concerning this gravitational model, we refer the reader to the recent p:
[39] and the references therein.

The order of approximation of the used spline-difference scheme is verified by the Rul
rule. The Runge rule is presented by the formula

Yn — Yo
Yy —yn

— 2P,

wherepis Runge’s number an, Yh/2, Y4 are the values of the grid functigrat the given
node, computed on meshes with stepl/2, andh/4. In our casg must be approximately
equal to 4.
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TABLE |
Data for Checking the Runge Rule

h v(1) [4EY) oD Rq Q

i —1.0059230404 —0.0471137759 0.4777335163 1.1609111685 0.800666248¢
% —1.0059334054 —0.0471120738 0.4777483180 1.1608888836 0.800667195(
i —1.0059342032 —0.0471119781 0.4777490917 1.1608875328 0.800667246°
p 3.61 4.22 4.37 4.06 4.28

In Table | the values of the sought grid functions at the pgriat 1, the corresponding
radius of staRs, and the quantity2 for o, = 0.8, uc =1,A=0.01,y =1,b=1, and
Xoo = 128 are shown.

It is obvious that the Runge relationship is satisfied for both the functions and the eig
valuesRs and <.

The correctness of the spline-difference scheme is verified through appropriate numel
experiments consisting of both grid doubling and doubling of the “actual infinity.” For thi
purpose, uniform meshes are used with numbers of the spline hoee56, 512, 1024,
2048, respectively. It turns out that the relative error between the values of the functi
v(X), ¢(X), ando (x) varies in the range 0.1-1% when the mesh is “coarde=(256,
512) and in the range 0.003—-0.02% when the mesh is “fifne=(1024, 2048). Similar
experiments are carried out with the “actual infinitys, = 64, 128 256. It is interesting
to note that the relative error between the set functiph9 ando (x) is very small (less
than 10%%), while the functiorv(x) is more sensitive with respect to the choice of the
guantity X... This fact is fully explainable if we take into account that the functigr)
decreases slowly at infinity compared to the other functions. (Theoreticadly~ —%
whenx — oco. Here, the quantityM is the total star mass.) The computed values of the
derivativev’(X,) as a function of the “actual infinityX,, are presented in Table Il. It
is easy to see the relationshif( X ) = % where the constar® > 0 depends on the
concrete solution (for the above solutiGn 1.133).

All governing parameters are varied in wide physically admissible ranges. As initi
distributions of the functions(x), ¢(X), o(x), and u(x) both analytic and numerical
approximations are used.

Results concerning a family of solutions will be considered below. They are obtained
the following fixed values of the parameters; = 0.5, A = 10,y = 10,b = 1, and the
“actual infinity” X, = 128, when the parameteg runs through the interval [Q, 0.9].

Figure 1 presents the dependence of the funatian on the dimensionless coordinate
for three different values of the central bosonic dengityit is seen that whea. increases,
the absolute value of(x) as a whole decreases and at great distances (from 3 star re
wheno, = 0.1 to 45 star radii in the casg = 0.9) from the star’s center approaches zerc
asymptotically. The qualitative behaviour of the three curves, however, remains the sa

TABLE Il
Asymptotic Behaviour of the Derivative v’ at the “Actual Infinity” X,

Xeo 32 64 128 256 512

V' (Xoo) 1.07246x 1073 2.63721x 1074 6.53945x 107° 1.62825x 1075 4.06241x 10°°




MATHEMATICAL MODELING OF STARS 265

Parameters: 1, =0.5,A=10,y=10,b=1
0 .

S
=]
L

Function v(x)
=~

Dimensionless Coordinate x

FIG. 1. The functionv(x) in dependence on the parameigr‘O"-o, = 0.1; “A™-0. = 0.5; “V"-0. = 0.9.

Such behaviour is natural and should be expected if the differential equation (24} for
is taken into account. From a physical point of view, this behaviour is natural also beca
the function expLZX)) is related to the gravitational potential.

Figure 2 presents the dependence of the dilatongietglon the dimensionless coordinate
x for four different values oé. The qualitative behaviour of the fiede(x) as a function of
o. is the following. For small values when increases, the dilaton field around the center o
the star decreases. Then, after some critical vafuine behaviour op(x) is changed and
¢(x) around the center of the star begins to increase with the increas€ldfe cause of the
described behaviour is the presence of the &fnon the RHS of Eq. (12). For sufficiently
small values of the density. the termP T is negative and has a dominant contribution with
respect to the teriT. For the sufficiently large central valug (oc > o), the term®T
changes its sign and amplifies the contribution®f leading to the increase of the function
@(X).

From a physical point of view, the described behaviour of the dilaton field (and con:
quently the behaviour of the physical gravitational “consta®i’A%(¢) ) for the central
valueso; > o seems to be strange. In order to clarify this situation, we have to take ir
account that in the range > o (for the fixed value of the central fermionic density)

- Parameters: u, =05, A=10,y=10,b=1

]

<o | —

S ] o o.=01

,:245 A 0.=05

= = o0,=07

> 16 3 % 0.209

B e

CH

S

= E

S \B\

= E

= 03

S
I S e ‘
0 1 3 4

3
Dimensionless Coordinate x

FIG. 2. The dilaton potentiap(x) as a function of the parameteg: “O"-0, = 0.1, “A"-0, = 0.5; “[1"-
0. =07, “V"-0,=0.9.
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Parameters: 1, =0.5,A=10,y=10,b=1

Boson Field o(x)
o o o
N N oo _

@
&
i

0 —r———r T
0 2 4 6 8 10 12 14 16
Dimensionless Coordinate x

FIG. 3. The bosonic density (x) as a function of the parameteg: “O"™-o0, = 0.1; “A"-0, = 0.5; “V"-
o, =0.9.

the star is unstable and, therefore, the mentioned range is not physically relevant. S
behaviour has to be considered only as an interesting mathematical fact. In the domai
stability 0 < o¢ < ¢, as we have already seen, the dilaton fig(e) has normal physical
behaviour—it decreases when the paramegéncreases.

The dependence of the bosonic density) on the dimensionless coordinatéor three
different values oby is presented in Fig. 3. The qualitative behaviour is the same for &
three different values af.. It approaches zero at infinity (rapidly whep= 0.1 and more
slowly wheno, increases).

In Fig. 4 the dependence of the fermionic dengitx) on the dimensionless coordinate
x is presented for three different valuesogf The qualitative behaviour of the three curves
is similar. In agreement with the initial assumption, it is nontrivial only within the star. It i
seen that when the valuea®fincreases, the density(x) increases as a whole, too. This fact
is related to the effect of an increase of the gravitational field with the increase-¢he
star becomes more compact, which leads to the greater density of matter, respective
the functionw (x). The same may be seen in Fig. 5; when the central valirecreases, the
radius of the staRs decreases about 10 times.

Parameters: L, =05, A=10,y=10,b=1

Fermionic Density J1(x)

Dimensionless coordinate x

FIG. 4. The fermionic density.(x) as a function of the parametey: “O"™o0, = 0.1, “A™ 0, = 0.5; “V"-
o, =0.9.
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FIG. 5. The radius of the staRs and the quantity2 exp(—@) as functions of the parametey: R—"";
Qexp(—12)—+0.

From a physical point of view it is important to learn about the behaviour of the quanti
Qexp(—%f’)) as a function of the central valug. That quantity may be considered the
energy of one boson in the gravitational field yielded by the rest matter (in the Einst
frame). Figure 5 clearly shows that the quanstexp(— %0)) increases along witt.. Such
behaviour should be expected, because the energy of the system has to increase wi
central density of the star.

6. CONCLUSION

Based on CANM an iteration method for solving the nonlinear BVP describing a sta
spherically symmetric boson—fermion star is developed.

A linearization of the main equations of the star reduces the original two-paramei
nonlinear spectral problem to three two-point linear vector BVPs and a linear systerr
algebraic equations for the spectral parameters (the radius of thesstad the frequency
Q of the bosonic field). A spline-collocation scheme of fourth order of approximation
used to solve these BVPs numerically.

Our basic physical result is that the structure and properties of the star in the presenc
amassive dilaton field depend essentially on both its fermionic and its bosonic compone
This shows that a careful investigation of these properties may provide ways to discc
physical effects of the hypothetical boson fields and dilaton field in stars.

APPENDIX

For the reader’s convenience, we briefly explain the main ideas of CANM.

CANM can be treated as a particular case of the continuous analogues of iteration m
ods, strictly formulated and studied by M. K. Gavurin in 1958 (see the review in [41]
Among the number of papers devoted to the theoretical development and application
CANM to solving wide classes of nonlinear equations, we indicate the basic papers [29-
as well as the reviews [34, 35].

Let us consider the nonlinear equation

x(y) =0, (A1)
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wherey (y) is an operator defined in a Banach sp#céVe suppose that Eq. (A.1) has an
isolated exact solutiog* € Y. Let the elemenyy € Y (an initial approximation tg/*) be
given. To solve Eq. (A.1), we can use an iteration process, usually taking it in the form

Ynt1=Yn+¥(¥n), n=012...

Here,n indicates the number of iterations atpdis an appropriate function, which carries
Y into itself and has the same zeroescas

The choice of the functiog (y) depends on the kind of concrete iteration method usec

According to Gavurin’s idea, for each iteration process of such kind it is possible
formulate the corresponding continuous analogue in the following way. Let us consit
an abstract functiog(t) of the independent continuous variable [0, co) instead of the
sequencego, Y1, ..., Yn, . . ., and suppose thgtt,) = y, for each. Then, we can introduce
the derivativey(t) instead of the increment,, 1 — y, and replace (A.1) with the abstract
initial value problem on the intervale [0, co)

yt) =¥ (), YO = Yo. (A.2)

Such a transition from a difference equation to a differential equation has many adv
tages, both in pure theoretical and in applied aspects.

In the case of Newton's method, we sgty) = —x’(y)"*x(y), where x'(y) is the
corresponding Freeh derivative ofy (y). Then, the main equation of CANM, arising from
(A.2), can be rewritten in the form

X' WY =—x(y). (A.3)

Obviously, the above ODE has a significant first integral of the kind

x(y(®) = x(Yoe™, (A.9)

which means thay (y(t)) — 0 whent — oo.

Various theorems, based on (A.4), concerning the convergence of ay@atto the
exact solutiony* have been proved. For example, a theorem [34] which guarantees 1
convergence of CANM for a simple BVP is cited below.

The following BVP is considered:

-y'+f(x,y)=0, xe (01, (A.5)
y©0) =0, y@)=0. (A.6)

THEOREMA.1. Letthe BVRA.5), (A.6) have an isolated solution*yx) and

(i) the function fx, y) have continuous partial derivatives up to the second order i
some domain D
(ii) the linear BVP

—w” + fy(X,y)w =0, xe€(0,1),
w@ =0, w@ =0

have only a trivial solutionv(x) = 0 for every smooth function(y) € D;
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(iii) the initial approximation y(x) € D be a smooth enough function satisfying
-y + f(X, Yol <& for &>0.
Then the system
—w'+ i yw=y' - fxy, y=uw,

withBCsw(0,t) = 0, w(1,t) = 0, andaninitial condition yx, 0) = yo(X), hasin[0, 1] U
[0, c0) a unique solution, satisfying the relation

Jim 1y(x, ) = y*(llczo 1y = 0.

The numerical solution of CANM equation (A.3) is based on an appropriate scheme
discretization, which has to be stable for the asymptotic stability of theygathThe one
most frequently used is Euler's scheme (see the details in the above cited papers). At
the linearized equation

X,(yn)wn = —x(Yn), (A7)

is solved with respect to the incremenyt, and then the next approximation is obtained via
the formula

Yn+1 = Yn + Tawn. (A.8)

Here, O< 1, < 1 is an iteration parameter. Whep = 1, the classical Newton method
is obtained. We note that the choice gfis important for the rapid convergence of the
process. It is possible to choose this parameter so that the range of convergence is wic
comparison to the classical Newton method [33, 37].

Theorems regarding the convergence of iterations (A.7), (A.8) for wide enough hypot
ses, as well as essential generalizations of CANM, are discussed in the above cited pa
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